
Efficiency in Action with Automation: A
Mobile Trade-In App Case Study
About
Trade-in and Upgrade solutions for the mobile device ecosystem of mobile operators, retailers, OEMs,

insurers, and online brands. These solutions support lifecycle management for pre-owned mobile and

connected devices including new revenue, market insights, environmental sustainability, customer

churn reduction, reduce the cost insurance and warranty programs, and promotions that help

consumers offset the cost of new handsets. By extending the life of pre-owned devices, it provides

consumers in developed and emerging markets with access to affordable, high-quality wireless

technology; builds economic opportunity and enables information access to new users; and protects our

planet from further e-waste.

Background

The client's previous experience with another organization left them unsatisfied. The automation

performed by the previous organization was deemed incorrect, leading to the emergence of Priority 1

(P1) bugs in the production environment. Additionally, the test coverage was inadequate.

In response to the client's dissatisfaction, the decision was made to abandon the old automation

framework. Then we introduced our proprietary framework RaptorVista, which aimed to provide a

more reliable and comprehensive solution.

This framework was designed to support the execution of scripts in various environments with a single

script, streamlining the testing process.

Our framework offered a significant improvement over the previous automation solution. Notably, the

framework incorporated its own written wrappers on top of existing libraries available in the market,

such as

• File util,

• Email util,

• Csv util,

• Properties util and more.

Impressed with our framework, the journey towards automation began in April 2019 with just a few

programs. Over time, the automation initiative has expanded and matured, currently handling

automation for more than 15 different vendors, reflecting substantial growth and progress.

Laying the Foundation

The initial phase involved understanding the product thoroughly and evolving our framework. To

achieve this, a multifaceted approach was adopted, including:

• Q&A sessions and training provided by the previous organization,

• live demonstrations,

• one-on-one consultations with business users,

• examination of business requirements,

• user stories,

• existing test cases,

• QA processes, and

• access to the existing environment, databases, and third-party systems.

Furthermore, deployment guidelines, system configuration, installation instructions, troubleshooting,

changelogs, and bug tracker data were scrutinized. This approach was implemented successfully with

initial clients, and it led to the automation of nearly all Priority 1 (P1) test cases.

Expanding the Framework

During the expansion of the framework, not only were existing libraries utilized, but custom wrappers

were created to meet specific business needs. These included utilities for:

• Generating IMEIs util

• State code util

Apart from above mentioned utils some generic utils were also added to RaptortVista, those were

added in addition to some pre-existing utils that includes:

• PDF reader

• Image verification

Gradually, the coverage of P1 test cases expanded to include more vendors, further proving the

effectiveness of our automation scripts.

API Automation

Earlier the client’s system was monolithic but later architectural changes were made towards

microservices. So, to automate these microservices a separate project was introduced.

This helps the team to catch the issues on first stage I.e., at API level.

Enhancing Efficiency

• To reduce manual effort even further, TestRail APIs were integrated into the framework. This

allowed the creation of test runs and the automated marking of test cases as pass or fail along

with logs to get more insight in case of failure.

• Additionally, support for backing up test suites in TestRail was introduced, aiding the manual

testing team.

• Earlier we did executions on VMs but it was time consuming, costly and less efficient. So, later

we migrated to AWS CodeBuild and Test container support (Docker Containerization) to

support parallel execution.

• To add on to the above, we also integrated DB through AWS RDS implementation.

Daily Run

To ensure there is no P1 bug in product, on daily basis P1 testcases are executed on the latest build.

As trust in the automation initiative grew, the client requested daily execution of smoke tests for

multiple clients. Initially, these tests were also conducted on virtual machines (VMs). However, due to its

drawbacks the process was migrated to AWS CodeBuild. Reports from these executions are directly

shared with stakeholders.

Library and Tool Updates

Regularly, libraries and tools integrated into the framework were updated to benefit from the latest

features and security patches. This helps maintain compatibility and performance.

Load and Performance Testing

In response to the success of previous tasks, the client expressed a desire to perform load and

performance testing. JMeter scripts were created to fulfill this requirement.

Benefits

Today, our automation scripts take on an average to execute 11000 testcases that saves over 1000

hours of manual testing, greatly improving efficiency and accuracy in the testing process. This case study

illustrates how a well-planned and executed automation strategy can lead to significant improvements

in quality assurance, testing, and reporting, ultimately benefiting both the development team and the

end users.

Our goal was to achieve comprehensive test coverage, ensuring that all critical aspects of the application

were thoroughly tested.

Since the implementation of the RaptorVista framework, the client has not encountered any critical P1

issues, showcasing the robustness and reliability of the automated testing process

	About

